National Repository of Grey Literature 9 records found  Search took 0.00 seconds. 
Identification methods of genetically related asteroids
Fatka, Petr ; Pravec, Petr (advisor) ; Christou, Apostolos (referee) ; Novakovič, Bojan (referee)
In this thesis, I describe the main ideas and summarize the results of four refereed papers I contributed to (three times as the second author and once as the first author). The first step of each of these papers was the identification of genetically related asteroid and their membership confirmation. Since members of asteroid pairs and clusters have a very similar heliocentric orbits, we employed and further developed methods based on backward orbital integrations. The chronologically first paper Pravec et al. (2018) deals with asteroid clusters and their similarity to asteroid pairs. The second paper Pravec et al. (2019) is a complex study of 93 asteroid pairs with many interesting results, such as the existence of binary asteroids among asteroid pairs. The third paper Moskovitz et al. (2019) deals with an identification of asteroid pairs in the near-Earth population and a detail study of two probable asteroid pairs. The fourth paper, Fatka et al. (2020), studies the phenomenon of cascade disruption in asteroid clusters, which results in multiple generations (with different ages) of escaped secondaries in some asteroid clusters.
Interactions of migrating giant planets and small solar-system bodies
Chrenko, Ondřej ; Brož, Miroslav (advisor)
Changes of semimajor axes of giant planets, which took place 4 billion years ago and evolved the Solar System towards its present state, affected various populations of minor Solar-System bodies. One of these populations was a group of dynamically stable asteroids in the 2:1 mean-motion resonance with Jupiter which reside in two islands of the phase space, denoted A and B, and exhibit lifetimes comparable to the age of the Solar System. The origin of stable asteroids has not been explained so far. Our main goal is to create a viable hypothesis of their origin. We update the resonant population and its physical properties on the basis of up-to-date observational data. Using an N-body model with seven giant planets and the Yarkovsky effect included, we demonstrate that the depletion of island A is faster compared to island B. We then investigate: (i) survivability of primordial resonant asteroids and (ii) capture of the population during planetary migration, using a recently described scenario with an escaping fifth giant planet and a jumping-Jupiter instability. We employ simulations with prescribed migration, smooth late migration and we statistically evaluate the results using dynamical maps. We also model collisions during the last 4 billion years. We conclude that the long-lived group was created by a...
Identification methods of genetically related asteroids
Fatka, Petr ; Pravec, Petr (advisor) ; Christou, Apostolos (referee) ; Novakovič, Bojan (referee)
In this thesis, I describe the main ideas and summarize the results of four refereed papers I contributed to (three times as the second author and once as the first author). The first step of each of these papers was the identification of genetically related asteroid and their membership confirmation. Since members of asteroid pairs and clusters have a very similar heliocentric orbits, we employed and further developed methods based on backward orbital integrations. The chronologically first paper Pravec et al. (2018) deals with asteroid clusters and their similarity to asteroid pairs. The second paper Pravec et al. (2019) is a complex study of 93 asteroid pairs with many interesting results, such as the existence of binary asteroids among asteroid pairs. The third paper Moskovitz et al. (2019) deals with an identification of asteroid pairs in the near-Earth population and a detail study of two probable asteroid pairs. The fourth paper, Fatka et al. (2020), studies the phenomenon of cascade disruption in asteroid clusters, which results in multiple generations (with different ages) of escaped secondaries in some asteroid clusters.
Interactions of migrating giant planets and small solar-system bodies
Chrenko, Ondřej ; Brož, Miroslav (advisor)
Changes of semimajor axes of giant planets, which took place 4 billion years ago and evolved the Solar System towards its present state, affected various populations of minor Solar-System bodies. One of these populations was a group of dynamically stable asteroids in the 2:1 mean-motion resonance with Jupiter which reside in two islands of the phase space, denoted A and B, and exhibit lifetimes comparable to the age of the Solar System. The origin of stable asteroids has not been explained so far. Our main goal is to create a viable hypothesis of their origin. We update the resonant population and its physical properties on the basis of up-to-date observational data. Using an N-body model with seven giant planets and the Yarkovsky effect included, we demonstrate that the depletion of island A is faster compared to island B. We then investigate: (i) survivability of primordial resonant asteroids and (ii) capture of the population during planetary migration, using a recently described scenario with an escaping fifth giant planet and a jumping-Jupiter instability. We employ simulations with prescribed migration, smooth late migration and we statistically evaluate the results using dynamical maps. We also model collisions during the last 4 billion years. We conclude that the long-lived group was created by a...
Rotational dynamics of asteroids affected by thermal emission from topographic features
Ševeček, Pavel ; Brož, Miroslav (advisor) ; Henych, Tomáš (referee)
Infrared radiation emitted from an asteroid surface causes a torque that can significantly affect rotational state of the asteroid. The influence of small topographic features on this phenomenon, called the YORP effect, hasn't been studied yet in detail. In this work, we show that lateral heat diffusion in surface features of suitable sizes leads to the emergence of a local YORP effect which magnitude is comparable to the YORP effect due to the global shape. We solve a three- dimensional heat diffusion equation in a boulder and its surroundings by the finite element method using the FreeFem++ code. The contribution to the total torque is then inferred from the com- puted temperature distribution. We compare the torque for various boulder shapes and material properties. For an idealized boulder our result is consistent with an existing one-dimensional model. Topographic features may cause a spherical asteroid of radius 1 km on a circular orbit at 2.5 AU to undergo a rotational acceleration of about (2.2 ± 1.1) · 10−9 rad/day2 , which corresponds to the spin-up timescale of the order τ = (32 ± 16) Myr. We estimated a size distribution of boulders based on close-up images of (25143) Itokawa surface. Finally, we realized that topographic features of Itokawa can induce a rotational acceleration of the order 10−7...
Heat diffusion equation and thermophysical modelling of asteroids
Pohl, Leoš ; Ďurech, Josef (advisor) ; Čapek, David (referee)
Light curve inversion is a standard method to determine shapes, rotation periods and spin axis orientations of asteroids. This method can be extended to determine the size, albedo, thermal inertia and surface roughness parameters of an asteroid by including observations in thermal infrared. A solution of the Heat Conduction Equation (HCE) is necessary to model infrared flux from the asteroid. We analyse the accuracy requirements of the extended method for numerical solution of the HCE. We show that current implementation leads to errors in flux that are substantial. We recommend changes in the current implementation of the HCE solving approach to address the accuracy issues. We discuss uniqueness and stability of the solutions produced by the extended method as well as the accuracy of the determined parameters and their stability. Shapes of asteroids are produced and their physical attributes are determined based on light curve and infrared data.
Interactions of migrating giant planets and small solar-system bodies
Chrenko, Ondřej ; Brož, Miroslav (advisor) ; Wünsch, Richard (referee)
Changes of semimajor axes of giant planets, which took place 4 billion years ago and evolved the Solar System towards its present state, affected various populations of minor Solar-System bodies. One of these populations was a group of dynamically stable asteroids in the 2:1 mean-motion resonance with Jupiter which reside in two islands of the phase space, denoted A and B, and exhibit lifetimes comparable to the age of the Solar System. The origin of stable asteroids has not been explained so far. Our main goal is to create a viable hypothesis of their origin. We update the resonant population and its physical properties on the basis of up-to-date observational data. Using an N-body model with seven giant planets and the Yarkovsky effect included, we demonstrate that the depletion of island A is faster compared to island B. We then investigate: (i) survivability of primordial resonant asteroids and (ii) capture of the population during planetary migration, using a recently described scenario with an escaping fifth giant planet and a jumping-Jupiter instability. We employ simulations with prescribed migration, smooth late migration and we statistically evaluate the results using dynamical maps. We also model collisions during the last 4 billion years. We conclude that the long-lived group was created by a...
Asteroid families and their relation to planetary migration
Rozehnal, Jakub ; Brož, Miroslav (advisor) ; Vokrouhlický, David (referee)
In this thesis, we study how the planetary migration affects asteroid families. We identify the families among the Trojans of Jupiter by analysing their properties in the space of resonant elements, the size-frequency distribution and the colour indices. The previously reported number of families (10) seems to be overestimated, our analysis indicates that there is only one collisional family among Trojans with the parent-body size DPB > 100 km. We also performed a simulation of the long-term orbital evolution of the Trojan families. We used a modified version of the SWIFT symplectic integrator where the migration is set analytically. We found that the families are unstable even in the late stages of the migration, when Jupiter and Saturn recede from their mutual 1:2 resonance. Hence, the families observed today must have been created after the planetary migration ended. In the last part of the work, we study a formation of asteroid families in the Main Belt during the Late Heavy Bombardement. We simulate perturbations induced by migrating planets in the "jumping Jupiter" scenario (Morbidelli et al., 2010) and we conclude that big families (DPB > 200 km) created during the bombardement should be observable today.
Origin of asteroids in the 2:1 mean-motion resonance with Jupiter
Chrenko, Ondřej ; Brož, Miroslav (advisor) ; Hanuš, Josef (referee)
Asteroids located in the 2:1 mean-motion resonance with Jupiter are classified as stable (called Zhongguos), marginally stable (called Griquas) and unstable (called Zulus) according to their dynamical lifetime. The stable asteroids reside in two separate stable islands in the pseudo-proper element space. In this thesis, we update the resonant population on the basis of up-to-date observational data and we determine orbital and physical properties of the resonant population. Using collisional models, we demonstrate that the observed Zhongguos and Griquas might be up to 4 Gyr old, thus their origin might be related to the planetary migration. Performing dynamical N-body simulations, we test two hypotheses of the origin of the long-lived population: the primordial population scenario, and the asteroidal capture scenario. Our results imply that the resonant population is not primordial but it was rather formed by the asteroids captured from an asteroidal family located in outer main belt.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.